Piano is one of the most beautiful and familiar music instrument that everyone loves to listen to, and many of us wanted to learn to play it when were young, because it has the most admirable sound and the sight of a pianist sitting on a piano stool doing their magic is unforgettable experience.

This adjustable stool is a type of swivel stool that has classic look with a turned spindle body. The seat can be raised and lowered, for a maximal pleasure while playing, and it would be nice addition to any kind of piano.

It is called the piano stool, because this type of swivel stool has most often been used as a piano seat/bench throughout history. If you have a look at the picture, you will see a nice stool that has a highly practical and convenient feature – adjustable height. Its design is a good match for any furniture style, and its comfort and functionality are of the same ranking in respect to other high-quality stools.

It consists of a body part with 4 legs attached (glued) to it. A metal subassembly (mutually welded parts called ‘nut’ and ‘nut cover’) with inner thread is inserted on top of the body part. The seat is formed of a wooden part, i.e., ‘top’ - and a metal construction that can be seen in the drawings. Clearly, the piano stool consists of two subassemblies: the body part with legs and the seat with a construction. They are joined together with a trapezoidal thread, which also allows the seat to be lifted or lowered to a suitable height.

The seat can be either wooden or upholstered for more comfort, and when it comes to its shape - either circular (as in our plan) or rectangular, all depending on your preferences. The part called ‘body’ is made on the lathe; if you do not dispose of one, simply use a rectangular piece of wood and decorate it with carving, and the like.
Parts List

<table>
<thead>
<tr>
<th>Item Number</th>
<th>Title</th>
<th>Material</th>
<th>Quantity</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top</td>
<td>Wood</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Top Disc</td>
<td>Steel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Wood Screw Ø4.5x30mm</td>
<td>Steel</td>
<td>6</td>
<td>Standard Part</td>
</tr>
<tr>
<td>4</td>
<td>Axle</td>
<td>Steel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Body</td>
<td>Wood</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Nut</td>
<td>Steel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Nut Cover</td>
<td>Steel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Wood Screw Ø3.5x30mm</td>
<td>Steel</td>
<td>4</td>
<td>Standard Part</td>
</tr>
<tr>
<td>9</td>
<td>Leg</td>
<td>Wood</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Triangle</td>
<td>Steel</td>
<td>4</td>
<td>Optional Parts</td>
</tr>
</tbody>
</table>
Assembly Drawing
Mark and drill holes during assembly.
4. Axle

Trapezoidal Thread Tr 24 x 3 mm
5. Body

Mark and drill pilot holes \(\phi 1.5 \text{mm} \) during assembly.
6. Nut

Trapezoidal Thread Tr24 x 3mm
7. Nut Cover
9. Leg

Distance between major line = 50mm
Distance between minor line = 10mm
10. Triangle
Standard Parts

3. Wood Screw D4,5 x 30mm

8. Wood Screw D3,5 x 30mm

Standard Parts
Assemblage images

1.

2.
3.

4.
6.